《九章算(suan)術》約成(cheng)書于(yu)東漢之(zhi)初,共(gong)有246個(ge)問題的(de)解(jie)法。在許(xu)多方面:如解(jie)聯立方程,分數四則運算(suan),正(zheng)負數運算(suan),幾何圖形的(de)體(ti)積面積計算(suan)等(deng),都屬于(yu)世界先進之(zhi)列。劉徽在曹魏(wei)景初四年注《九章算(suan)術注》。
但因(yin)解法(fa)比較原始,缺乏必要的(de)(de)(de)(de)證(zheng)明,劉(liu)徽則(ze)(ze)對(dui)此均(jun)作了(le)(le)補充證(zheng)明。在(zai)這些證(zheng)明中(zhong),顯示(shi)了(le)(le)他在(zai)眾(zhong)多(duo)方(fang)(fang)(fang)面的(de)(de)(de)(de)創造性貢獻。他是世界上最早提(ti)出(chu)十進(jin)小數(shu)(shu)概念的(de)(de)(de)(de)人,并用(yong)(yong)十進(jin)小數(shu)(shu)來表(biao)示(shi)無理數(shu)(shu)的(de)(de)(de)(de)立方(fang)(fang)(fang)根。在(zai)代數(shu)(shu)方(fang)(fang)(fang)面,他正(zheng)確(que)地提(ti)出(chu)了(le)(le)正(zheng)負(fu)數(shu)(shu)的(de)(de)(de)(de)概念及其加(jia)減(jian)運算(suan)的(de)(de)(de)(de)法(fa)則(ze)(ze),改進(jin)了(le)(le)線性方(fang)(fang)(fang)程組的(de)(de)(de)(de)解法(fa)。在(zai)幾(ji)何方(fang)(fang)(fang)面,提(ti)出(chu)了(le)(le)"割(ge)(ge)(ge)(ge)圓(yuan)(yuan)術",即(ji)將圓(yuan)(yuan)周用(yong)(yong)內接(jie)或外切正(zheng)多(duo)邊(bian)(bian)形(xing)窮竭的(de)(de)(de)(de)一種求圓(yuan)(yuan)面積和圓(yuan)(yuan)周長(chang)的(de)(de)(de)(de)方(fang)(fang)(fang)法(fa)。他利用(yong)(yong)割(ge)(ge)(ge)(ge)圓(yuan)(yuan)術科(ke)(ke)學地求出(chu)了(le)(le)圓(yuan)(yuan)周率π=3.1416的(de)(de)(de)(de)結(jie)果。他用(yong)(yong)割(ge)(ge)(ge)(ge)圓(yuan)(yuan)術,從直徑為(wei)2尺的(de)(de)(de)(de)圓(yuan)(yuan)內接(jie)正(zheng)六邊(bian)(bian)形(xing)開始割(ge)(ge)(ge)(ge)圓(yuan)(yuan),依次得正(zheng)12邊(bian)(bian)形(xing)、正(zheng)24邊(bian)(bian)形(xing)……,割(ge)(ge)(ge)(ge)得越(yue)(yue)細,正(zheng)多(duo)邊(bian)(bian)形(xing)面積和圓(yuan)(yuan)面積之差越(yue)(yue)小,用(yong)(yong)他的(de)(de)(de)(de)原話說是“割(ge)(ge)(ge)(ge)之彌細,所(suo)失彌少,割(ge)(ge)(ge)(ge)之又割(ge)(ge)(ge)(ge),以至于不可割(ge)(ge)(ge)(ge),則(ze)(ze)與圓(yuan)(yuan)周合體而(er)無所(suo)失矣。”他計(ji)算(suan)了(le)(le)3072邊(bian)(bian)形(xing)面積并驗證(zheng)了(le)(le)這個值。劉(liu)徽提(ti)出(chu)的(de)(de)(de)(de)計(ji)算(suan)圓(yuan)(yuan)周率的(de)(de)(de)(de)科(ke)(ke)學方(fang)(fang)(fang)法(fa),奠定了(le)(le)此后千余年來中(zhong)國(guo)圓(yuan)(yuan)周率計(ji)算(suan)在(zai)世界上的(de)(de)(de)(de)領先(xian)地位。
劉徽(hui)在數(shu)(shu)學上的(de)(de)(de)(de)貢(gong)獻極(ji)多(duo),在開方(fang)不盡的(de)(de)(de)(de)問題(ti)中提(ti)(ti)出“求(qiu)徽(hui)數(shu)(shu)”的(de)(de)(de)(de)思想,這方(fang)法(fa)與后來求(qiu)無理根(gen)的(de)(de)(de)(de)近似(si)值的(de)(de)(de)(de)方(fang)法(fa)一(yi)(yi)致,它不僅是圓周率(lv)精確(que)計算的(de)(de)(de)(de)必(bi)要條件,而且促(cu)進(jin)了(le)十進(jin)小數(shu)(shu)的(de)(de)(de)(de)產生(sheng);在線性(xing)方(fang)程(cheng)組解法(fa)中,他(ta)創造了(le)比直除(chu)法(fa)更(geng)簡便(bian)的(de)(de)(de)(de)互乘相消法(fa),與現今解法(fa)基本(ben)一(yi)(yi)致;并(bing)在中國數(shu)(shu)學史上第(di)一(yi)(yi)次提(ti)(ti)出了(le)“不定(ding)方(fang)程(cheng)問題(ti)”;他(ta)還(huan)(huan)建立了(le)等差級(ji)數(shu)(shu)前(qian)n項和公式;提(ti)(ti)出并(bing)定(ding)義了(le)許(xu)多(duo)數(shu)(shu)學概(gai)念:如冪(面積);方(fang)程(cheng)(線性(xing)方(fang)程(cheng)組);正(zheng)負數(shu)(shu)等等.劉徽(hui)還(huan)(huan)提(ti)(ti)出了(le)許(xu)多(duo)公認正(zheng)確(que)的(de)(de)(de)(de)判斷作為(wei)證明的(de)(de)(de)(de)前(qian)提(ti)(ti).他(ta)的(de)(de)(de)(de)大多(duo)數(shu)(shu)推理、證明都合(he)乎邏輯,十分(fen)嚴謹,從而把(ba)《九章(zhang)算術(shu)》及他(ta)自己提(ti)(ti)出的(de)(de)(de)(de)解法(fa)、公式建立在必(bi)然(ran)性(xing)的(de)(de)(de)(de)基礎之上。雖然(ran)劉徽(hui)沒有寫出自成體系(xi)的(de)(de)(de)(de)著作,但他(ta)注《九章(zhang)算術(shu)》所運用(yong)的(de)(de)(de)(de)數(shu)(shu)學知(zhi)識,實際上已經形成了(le)一(yi)(yi)個獨(du)具特色、包括概(gai)念和判斷、并(bing)以數(shu)(shu)學證明為(wei)其聯系(xi)紐帶的(de)(de)(de)(de)理論體系(xi)。
劉(liu)徽(hui)在(zai)割(ge)圓(yuan)術中提(ti)(ti)出的(de)(de)"割(ge)之彌細,所(suo)失彌少,割(ge)之又(you)割(ge)以(yi)至于不可(ke)割(ge),則與(yu)圓(yuan)合體而無(wu)所(suo)失矣",這(zhe)可(ke)視為中國(guo)古代(dai)極限(xian)觀(guan)念的(de)(de)佳作。《海島算經(jing)》一書中,劉(liu)徽(hui)精心選編了九個測量(liang)問題,這(zhe)些題目(mu)的(de)(de)創造性、復雜性和富(fu)有(you)代(dai)表性,都在(zai)當時為西方(fang)所(suo)矚目(mu)。劉(liu)徽(hui)思想敏捷,方(fang)法靈活,既提(ti)(ti)倡推(tui)理又(you)主張直觀(guan)。他是我國(guo)最早明確主張用邏輯(ji)推(tui)理的(de)(de)方(fang)式來論(lun)證數學命題的(de)(de)人(ren)。精確到了小數點后5位。
劉徽(hui)其代表作《九(jiu)章(zhang)算術(shu)注》是(shi)對《九(jiu)章(zhang)算術(shu)》一書(shu)的注解(jie)。《九(jiu)章(zhang)算術(shu)》是(shi)中國流傳(chuan)至今(jin)最古老的數學專著之一,它成(cheng)(cheng)書(shu)于(yu)西漢(han)時期(qi)。這部書(shu)的完(wan)(wan)成(cheng)(cheng)經(jing)過(guo)了一段歷(li)史(shi)過(guo)程,書(shu)中所收集的各種數學問題,有些是(shi)秦以前(qian)流傳(chuan)的問題,長期(qi)以來經(jing)過(guo)多人刪補、修訂,最后(hou)由西漢(han)時期(qi)的數學家整理完(wan)(wan)成(cheng)(cheng)。現今(jin)流傳(chuan)的定(ding)本的內(nei)容(rong)在東漢(han)之前(qian)已經(jing)形成(cheng)(cheng)。
《九(jiu)章算術》是中(zhong)國最重要(yao)的(de)一部經典數(shu)學著作,它的(de)完成奠定(ding)了中(zhong)國古代數(shu)學發(fa)展的(de)基礎(chu),在中(zhong)國數(shu)學史(shi)上占有極為重要(yao)的(de)地(di)位。現傳本《九(jiu)章算術》共收集(ji)了246個應用問(wen)題和各種問(wen)題的(de)解(jie)法,分別隸屬于方(fang)田、粟米、衰(shuai)分、少廣、商功(gong)、均輸、盈不(bu)足、方(fang)程、勾股九(jiu)章。
《九(jiu)章(zhang)算術》的(de)(de)(de)產生是社會(hui)發展和(he)數(shu)學(xue)知識長期積累的(de)(de)(de)結果,它匯集了(le)不同時期數(shu)學(xue)家的(de)(de)(de)勞動(dong)成果。三國(guo)時的(de)(de)(de)數(shu)學(xue)家劉徽認為:“周(zhou)公制禮有九(jiu)數(shu),九(jiu)數(shu)之流,則(ze)(ze)《九(jiu)章(zhang)》是矣(yi)。……漢(han)北(bei)平侯(hou)張蒼(cang)、大司農(nong)中(zhong)丞耿(geng)壽(shou)昌皆(jie)以善算命世。蒼(cang)等因舊文(wen)(wen)之遺殘(can),各稱刪(shan)(shan)補。故校其(qi)目則(ze)(ze)與古或異,而所(suo)論多近語也。”根(gen)據劉徽的(de)(de)(de)考證結果,《九(jiu)章(zhang)算術》源(yuan)于周(zhou)公時代的(de)(de)(de)“九(jiu)數(shu)”,而他所(suo)見(jian)到的(de)(de)(de)《九(jiu)章(zhang)算術》是西(xi)漢(han)時的(de)(de)(de)張蒼(cang)、耿(geng)壽(shou)昌在先秦遺文(wen)(wen)的(de)(de)(de)基礎上刪(shan)(shan)補而成的(de)(de)(de),其(qi)中(zhong)包括了(le)大量西(xi)漢(han)時補充的(de)(de)(de)內容。根(gen)據歷史文(wen)(wen)獻和(he)出土(tu)文(wen)(wen)物(wu)資料來(lai)分析,劉徽所(suo)言是可信的(de)(de)(de)。
《九(jiu)章(zhang)算(suan)術》所包含的(de)(de)(de)(de)各種算(suan)法是(shi)漢(han)朝數(shu)學(xue)家們(men)(men)在秦(qin)以(yi)前流(liu)傳(chuan)下(xia)來的(de)(de)(de)(de)數(shu)學(xue)基礎上,適應當(dang)時的(de)(de)(de)(de)需要補(bu)充(chong)修(xiu)訂而成的(de)(de)(de)(de)。按照(zhao)劉徽的(de)(de)(de)(de)考證,張(zhang)(zhang)蒼(cang)(cang)和耿(geng)壽(shou)昌都是(shi)參加(jia)過修(xiu)訂工作的(de)(de)(de)(de)主(zhu)(zhu)要數(shu)學(xue)家。《史記·張(zhang)(zhang)丞相列傳(chuan)》記載(zai),張(zhang)(zhang)蒼(cang)(cang)(約公(gong)元(yuan)前250~公(gong)元(yuan)前152)經(jing)歷(li)了(le)秦(qin)、漢(han)兩(liang)個朝代(dai)(dai),他(ta)在高帝六年(nian)(nian)(公(gong)元(yuan)前201年(nian)(nian))以(yi)攻藏(zang)茶有(you)功封為(wei)北平侯。“自(zi)秦(qin)時為(wei)柱下(xia)史,明天(tian)(tian)下(xia)圖書(shu)計籍(ji)。又(you)善用(yong)算(suan)律(lv)歷(li)。”他(ta)還“著(zhu)書(shu)18篇,言(yan)陰(yin)陽律(lv)歷(li)事。”耿(geng)壽(shou)昌的(de)(de)(de)(de)生年(nian)(nian)年(nian)(nian)代(dai)(dai)不詳,漢(han)宣(xuan)帝時官至大司農中丞,“以(yi)善為(wei)算(suan),能商功利”得(de)寵于皇帝(見《漢(han)書(shu)·食(shi)貨志(zhi)》)。他(ta)于天(tian)(tian)文(wen)學(xue)主(zhu)(zhu)張(zhang)(zhang)渾天(tian)(tian)說,甘露二(er)年(nian)(nian)(公(gong)元(yuan)前52年(nian)(nian))奏“以(yi)圓儀度日(ri)月(yue)行(xing),考驗天(tian)(tian)運狀”(見《后漢(han)書(shu)·律(lv)歷(li)志(zhi)》)。張(zhang)(zhang)蒼(cang)(cang)和耿(geng)壽(shou)昌都是(shi)數(shu)學(xue)名家,又(you)身居高位,由他(ta)們(men)(men)主(zhu)(zhu)持修(xiu)訂先(xian)秦(qin)流(liu)傳(chuan)下(xia)來的(de)(de)(de)(de)《算(suan)術》是(shi)很自(zi)然(ran)的(de)(de)(de)(de)事情。根據劉徽的(de)(de)(de)(de)記載(zai),他(ta)所注釋的(de)(de)(de)(de)《九(jiu)章(zhang)算(suan)術》最(zui)后是(shi)由耿(geng)壽(shou)昌刪(shan)定(ding)的(de)(de)(de)(de)。我們(men)(men)認為(wei)耿(geng)壽(shou)昌刪(shan)補(bu)《九(jiu)章(zhang)算(suan)術》的(de)(de)(de)(de)年(nian)(nian)代(dai)(dai)可以(yi)定(ding)為(wei)這部書(shu)完成的(de)(de)(de)(de)年(nian)(nian)代(dai)(dai)。
《九(jiu)章(zhang)算(suan)(suan)(suan)(suan)術(shu)》是由國家組織力量編纂的(de)(de)(de)一部官方(fang)性數(shu)(shu)學(xue)(xue)(xue)教科書(shu)(shu),對兩漢(han)時期數(shu)(shu)學(xue)(xue)(xue)的(de)(de)(de)發展產生了很大的(de)(de)(de)影(ying)響。《廣韻》卷(juan)(juan)四有“九(jiu)章(zhang)術(shu),漢(han)許(xu)(xu)商(shang)(shang)、杜(du)(du)志(zhi)(zhi)、吳陳熾、王粲并善(shan)之”,《后(hou)漢(han)書(shu)(shu)·馬(ma)援傳(chuan)》有馬(ma)續(約70~141年(nian)(nian)(nian))“博觀群籍(ji),善(shan)九(jiu)章(zhang)算(suan)(suan)(suan)(suan)術(shu)”負記載(zai)。此外,史書(shu)(shu)中還有鄭(zheng)玄(127~200年(nian)(nian)(nian))、劉洪等人“通九(jiu)章(zhang)算(suan)(suan)(suan)(suan)術(shu)”的(de)(de)(de)記述。可知該(gai)書(shu)(shu)是當時學(xue)(xue)(xue)習(xi)數(shu)(shu)學(xue)(xue)(xue)的(de)(de)(de)重要(yao)教材,在(zai)東漢(han)光和二年(nian)(nian)(nian)(179)一塊銅版上的(de)(de)(de)銘文規(gui)定:“大司農以(yi)戊(wu)寅(138?)詔書(shu)(shu),……特更為諸州作(zuo)(zuo)銅斗、斜(xie)、稱。依黃鐘(zhong)律(lv)歷,《九(jiu)章(zhang)算(suan)(suan)(suan)(suan)術(shu)》以(yi)均(jun)長短、輕重、大小,以(yi)齊七政(zheng),令海內(nei)都同。”這(zhe)說明該(gai)書(shu)(shu)在(zai)東漢(han)時期不僅(jin)廣為流傳(chuan),而且度量衡研(yan)制(zhi)涉及的(de)(de)(de)數(shu)(shu)學(xue)(xue)(xue)問題也要(yao)以(yi)書(shu)(shu)中的(de)(de)(de)算(suan)(suan)(suan)(suan)法為依據。許(xu)(xu)商(shang)(shang)、杜(du)(du)志(zhi)(zhi)可能(neng)是《九(jiu)章(zhang)算(suan)(suan)(suan)(suan)書(shu)(shu)》成(cheng)書(shu)(shu)后(hou)最早研(yan)究(jiu)過該(gai)書(shu)(shu)的(de)(de)(de)數(shu)(shu)學(xue)(xue)(xue)家。許(xu)(xu)商(shang)(shang)、杜(du)(du)志(zhi)(zhi)都是西漢(han)后(hou)期的(de)(de)(de)數(shu)(shu)學(xue)(xue)(xue)家。《漢(han)書(shu)(shu)·藝(yi)文志(zhi)(zhi)》著錄有《許(xu)(xu)商(shang)(shang)算(suan)(suan)(suan)(suan)術(shu)》26卷(juan)(juan)、《杜(du)(du)志(zhi)(zhi)算(suan)(suan)(suan)(suan)術(shu)》16卷(juan)(juan)。這(zhe)兩部書(shu)(shu)都是漢(han)成(cheng)帝三(san)年(nian)(nian)(nian)(前26)尹咸校對數(shu)(shu)術(shu)著作(zuo)(zuo)之前撰寫的(de)(de)(de)。許(xu)(xu)商(shang)(shang)、杜(du)(du)志(zhi)(zhi)的(de)(de)(de)著作(zuo)(zuo)完成(cheng)年(nian)(nian)(nian)代與耿壽昌(chang)刪補《九(jiu)章(zhang)算(suan)(suan)(suan)(suan)術(shu)》的(de)(de)(de)年(nian)(nian)(nian)代相去不遠,他們的(de)(de)(de)數(shu)(shu)學(xue)(xue)(xue)著作(zuo)(zuo)應當是在(zai)研(yan)究(jiu)了《九(jiu)章(zhang)算(suan)(suan)(suan)(suan)術(shu)》的(de)(de)(de)基礎上完成(cheng)的(de)(de)(de)。
《九(jiu)章算(suan)術(shu)》不僅在(zai)中(zhong)(zhong)國數(shu)學史上(shang)占有重要地位,對世(shi)界數(shu)學的(de)(de)發展(zhan)也(ye)有著重要的(de)(de)貢(gong)獻。分(fen)數(shu)理論及其(qi)完整(zheng)的(de)(de)算(suan)法(fa),比(bi)例和比(bi)例分(fen)配(pei)算(suan)法(fa),面積(ji)和體積(ji)算(suan)法(fa),以及各(ge)類應用問題(ti)的(de)(de)解法(fa),在(zai)書中(zhong)(zhong)的(de)(de)方(fang)田、粟(su)米、衰分(fen)、商功、均輸等(deng)(deng)章已有了相當詳備的(de)(de)敘(xu)述。而少廣、盈不足、方(fang)程、勾股等(deng)(deng)章中(zhong)(zhong)的(de)(de)開立方(fang)法(fa)、盈不足術(shu)(雙假設(she)法(fa))、正負(fu)數(shu)概念、線(xian)性聯立方(fang)程組解法(fa)、整(zheng)數(shu)勾股弦的(de)(de)一般公(gong)式等(deng)(deng)內容都是世(shi)界數(shu)學史上(shang)的(de)(de)卓越成(cheng)就。 傳本(ben)《九(jiu)章算(suan)術(shu)》有劉徽注(zhu)和唐李淳風等(deng)(deng)的(de)(de)注(zhu)釋。
劉徽是中國古(gu)(gu)代杰(jie)出(chu)的(de)(de)(de)數(shu)(shu)學家(jia),他(ta)(ta)生(sheng)(sheng)活在三國時(shi)代的(de)(de)(de)魏國。《隋書·律歷志》論歷代量制引商(shang)功章(zhang)注,說“魏陳留王景元四(si)年(263)劉徽注《九章(zhang)》。”他(ta)(ta)的(de)(de)(de)生(sheng)(sheng)平不(bu)(bu)可詳考。劉徽的(de)(de)(de)《九章(zhang)》注不(bu)(bu)僅在整理古(gu)(gu)代數(shu)(shu)學體系和完善古(gu)(gu)算 理論方面取得了(le)重要成就,而且提出(chu)了(le)豐富多(duo)彩的(de)(de)(de)創見和發明。劉徽在算術(shu)、代數(shu)(shu)、幾何等方面都有杰(jie)出(chu)的(de)(de)(de)貢獻。例如,他(ta)(ta)用比率理論建(jian)立(li)(li)了(le)數(shu)(shu)與式(shi)的(de)(de)(de)統一的(de)(de)(de)理論基礎,他(ta)(ta)應用了(le)出(chu)入(ru)相補原理和極限方法解決了(le)許多(duo)面積和體積問題,建(jian)立(li)(li)了(le)獨具風(feng)格的(de)(de)(de)面積和體積理論。他(ta)(ta)對《九章(zhang)》中的(de)(de)(de)許多(duo)結(jie)論給出(chu)了(le)嚴格的(de)(de)(de)證(zheng)明,他(ta)(ta)的(de)(de)(de)一些方法對后(hou)世有很大啟發,即使對現今數(shu)(shu)學也(ye)有可借鑒之(zhi)處(chu)。
劉徽的數(shu)學成就大(da)致為(wei)兩方面:
一是整(zheng)理(li)中(zhong)(zhong)國古代數學體系并(bing)奠定(ding)了(le)它的(de)理(li)論基(ji)礎,這(zhe)方面集中(zhong)(zhong)體現在《九章(zhang)算(suan)術注(zhu)》中(zhong)(zhong)。它實已(yi)形成為一個(ge)比較完整(zheng)的(de)理(li)論體系:
數系理論
用(yong)數(shu)的(de)同類與異類闡述了(le)通分(fen)、約(yue)分(fen)、四則(ze)運算(suan),以(yi)及(ji)繁分(fen)數(shu)化(hua)簡等的(de)運算(suan)法則(ze);在(zai)開方術(shu) 的(de)注釋中,他(ta)從開方不盡的(de)意義出發,論述了(le)無理(li)方根(gen)的(de)存在(zai),并(bing)引(yin)進(jin)了(le)新數(shu),創(chuang)造了(le)用(yong)十進(jin)分(fen)數(shu)無限逼近無理(li)根(gen)的(de)方法。
在籌式演算(suan)理論方面, 先給(gei)率(lv)以比較明確(que)的(de)(de)(de)(de)定義,又以遍(bian)乘、通約(yue)、齊同等(deng)三種基(ji)本運算(suan)為(wei)基(ji)礎(chu),建(jian)立了數(shu)(shu)與式運算(suan)的(de)(de)(de)(de)統一的(de)(de)(de)(de)理論基(ji)礎(chu),他(ta)還用“率(lv)”來定義中(zhong)國古代數(shu)(shu)學中(zhong)的(de)(de)(de)(de)“方程(cheng)”,即現(xian)代數(shu)(shu)學中(zhong)線性(xing)方程(cheng)組的(de)(de)(de)(de)增(zeng)廣矩陣。
在勾股理(li)論(lun)(lun)方面逐一論(lun)(lun)證了有關勾股定理(li)與(yu)(yu)解勾股形(xing)的計算原(yuan)理(li),建立了相似(si)勾股形(xing)理(li)論(lun)(lun),發(fa)展了勾股測量術(shu),通過對(dui)“勾中容橫”與(yu)(yu)“股中容直”之類的典型圖形(xing)的論(lun)(lun)析,形(xing)成了中國特色的相似(si)理(li)論(lun)(lun)。
面積與體積理論
用出入(ru)相補、以(yi)盈補虛的(de)原理及“割圓術”的(de)極限(xian)方法提(ti)出了劉徽原理,并解決了多(duo)種幾(ji)何形、幾(ji)何體(ti)的(de)面積、體(ti)積計算問(wen)題(ti)。這些(xie)方面的(de)理論價值(zhi)至(zhi)今仍閃爍著余輝(hui)。
二是在繼(ji)承的基礎(chu)上提出了(le)自己的創見。這方(fang)面(mian)主要體現為以下(xia)幾項有代表性的創見:
割圓(yuan)術(shu)與圓(yuan)周率(lv), 他(ta)在《九章(zhang)算術(shu) 圓(yuan)田術(shu)》注(zhu)中,用割圓(yuan)術(shu)證明了圓(yuan)面積的精確公(gong)式,并給出了計(ji)算圓(yuan)周率(lv)的科學方法。他(ta)首先從圓(yuan)內接六邊形開始割圓(yuan),每次邊數倍(bei)增,算到192邊形的面積,得(de)到π=157/50=3.14,又算到3072邊形的面積,得(de)到π=3927/1250=3.1416,稱為(wei)“徽(hui)率(lv)”。
劉徽原理(li)在《九章算術陽馬術》注中,他(ta)在用無限(xian)分割(ge)的方(fang)法(fa)解(jie)決錐體體積(ji)(ji)時,提出了關(guan)于多面體體積(ji)(ji)計算的劉徽原理(li)。
“牟合方蓋”說
在《九(jiu)章算術(shu)開立圓(yuan)術(shu)》注中,他指出了球(qiu)體積(ji)公式V=9D3/16(D為球(qiu)直徑(jing))的(de)(de)不(bu)精(jing)確性(xing),并引入了“牟合方蓋”這一著(zhu)名的(de)(de)幾何(he)模型。“牟合方蓋”是指正(zheng)方體的(de)(de)兩個軸互相垂直的(de)(de)內切圓(yuan)柱體的(de)(de)貫交部分(fen)。
方程新術
在《九章算(suan)術方程術》注中,他提出了解線性(xing)方程組的新方法,運(yun)用了比率算(suan)法的思(si)想。
重差術
在(zai)自撰(zhuan)《海島算經》中(zhong),他(ta)提(ti)出了(le)(le)重(zhong)差術,采用了(le)(le)重(zhong)表、連索和(he)累(lei)矩等測高測遠(yuan)方法(fa)。他(ta)還運用“類推衍化”的(de)方法(fa),使(shi)重(zhong)差術由兩(liang)次測望(wang),發展為“三望(wang)”、“四(si)望(wang)”。而印度在(zai)7世(shi)紀(ji),歐洲在(zai)15~16世(shi)紀(ji)才(cai)開始研究兩(liang)次測望(wang)的(de)問題。劉(liu)徽的(de)工作(zuo),不僅對(dui)中(zhong)國(guo)古代數(shu)學(xue)發展產生了(le)(le)深遠(yuan)影(ying)響,而且在(zai)世(shi)界數(shu)學(xue)史上也確立了(le)(le)崇高的(de)歷(li)史地位。鑒于劉(liu)徽的(de)巨大貢獻,所以不少書上把他(ta)稱作(zuo)“中(zhong)國(guo)數(shu)學(xue)史上的(de)牛(niu)頓”。